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1 Introduction

Many papers have been devoted to the bilevel programming problem in the last
decade. All of them recognize that this type of problem is nonconvex and very
difficult to solve. In particular, the linear problem has received more attention
and has been solved at least partially, since some problems have been encountered
when considering algorithms.

The value function technique plays a central role in sensitivity analysis, con-
trollability and even in establishing necessary conditions, see for example [10], [11],
[12], {13], [17] and [18]. In the present paper however, we will use the value function
to express the second level of the (BLP P), an abreviation to: bi-level programming
problem. The advantage of using the value function is to transform the (BLPP)
to a one level programming problem containing this function in one of the inequal-
ity constraints. However, one disadvantage is the implicit hypothesis that the
(BLPP) has some kind of cooperation (see remark 3.1 (2)). Another disadvantage
is the possibility that the value function can have bad behavior with respect to
finiteness, continuity or differentiabilty. Moreover, the value function itself express
a parameterized programming problem, which can be difficult to solve. In spite
of these disadvantages, the formulation considered here will show its efficiency in
many typical problems; we will consider only three examples. Other examples are
examined in another paper on necessary conditions, [19].

The present paper is organized as follows. In the next section, we formulate
the problem in a standard form. Section 3 is devoted to the reformulation of
the (BLPP) by means of the value function and to the study of some properties
concerning this function and the set of solutions to the second level. We show in
section 4 why the problem has a nonconvex nature and at the same time we identify
a class of convex problems. Section 5 is reserved to the existence theory, where

two examples are examined in details. In section 6 the multi-level programming



problem is sddressed and an example is given. Finally, section 7 is devoted to the
study of a concrete application of bi-level programming to a Lanchester model on

market share competition.

2 Formulation of the problem

Although we are intersted to the study of (BLPP) in this article, we can address
the general (M LPP) multi-level programming problem and generalize results of
oncomming sections to this class of problem. A formulation of the (MLPP) is
given in section 6.

Let n;, m; (2 = 1, 2) be integers with n; > 1 and m; > 0. We are given functions:
Ff:B*"xR% — R,G=[G1,...,Gp,] : B xR = R™, 9 = [g1,-. ., 9my] :
R™ x R™ — R™ and sets X C R™,Y C R™. The standard bilevel programming

problem is stated as follows:

(BLPP)
min F(z, y),
(P1)
s.t.. G(z,y) <0,

s.t. for each fixed z in X,y = y(z) is a solution to the problem:

Iyrg,},lf(x,y),
(P2)
s.t.. g(z,y) <0.

We agree that whenever m; = 0 or m; = 0, this means that the corresponding

inequality constraint is absent in the (BLPP). We interpret the (BLPP) as follows.
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The problem is divided into two linked subproblems (P;) and (P;), where the first
one is controlled by the “leader” and the second one by the “follower.” The leader
has the advantage to fix his strategy = € X first, then the follower will respond
by one strategy y = y{«) or perhaps more, i.e., y € O(z), where O(z) denotes the
set of all optimal solutions to (P;) for fixed , in a way such that his objective
function is optimized. Following the reaction of the follower, the leader will choose
among all admissible z’s the one(s) which realize the optimum of his objective
function F(z,y(z)) if it is possible. We will see in this section the exact definition
of an optimal solution to this problem. We note that in the definition we gave,
we have supposed that there is some sort of cooperation between the leader and
the follower, in the sense that the leader knows all optimal strategies fixed by
the follower. This kind of problem will called “cooperatif problem.” Some basic

definitions are required in the sequel and are given below.
Definition 2.1 (1) Constraint region of the (BLPP):
S={(z,y) € X xY: g(z,y) <0,G(z,y) <0}
(2) Feasible set for the second level problem P, for each fired x in X :
Sz)={yeY: gle,y) <0}
(3) The projection of S on R™ :
P={zeX: yeY st g(z,y) <0,G(z,y) <0}
(4) The rational reaction set of (P;) forz € P:
O(z) = {y € S(z): y € arg min, f(z,2)}.
(5) The inducible set for the (BLPP):
S={(z,9): (z,y) €Sye€O0(z)}
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inf f(z,y) if S(z)+#9,
yES(z)
V(z) := inf{P(z)} =

+o0 otherwise,

Note that V{(-) may take the value —ooc, because the problem P(z) may not have
a solution. The value +oo is assigned to V(-) by the convention that the infimum
over the empty set is equal to +co. In general, the function V() is not differentiable
neither convex or Lipschitz or continuous even if the functions F, f,G, g are. In
spite of this eventual bad behavior of V(-), this function enables us to reformulate
the (BLPP) as a single programming problem. Actually, we have the following

result.

Lemma 3.1 As long as (BLPP) admits a solution, then (Z,y) is a solution to
the (BLPP) iff (%,§) s a solution to the following problem:

(RBLPP) n;liynF(x,y),

’

(z,y) € X XY,
Gt ¢ f(x,y)-—V(:c)=0,
G(z,y) <0,
| g(=,y) 0. u

Remark 3.1 (1) Since by the defintion of V(-), we have always f(z,y)—-V(z) >
0, for all (x,y) satisfying y € S(z) and z € X, the equality constraint in
(RBLPP), f(z,y)—V(z) = 0is in fact equivalent to the inequality constraint
flz,y) — V(z) < 0 whenver y € S(z),z € X.

(2) We should note that it is implicitely assumed in the lemma that the (BLPP)

is cooperatif in the following sense. In the original formulation of the problem,



for each z fixed by the leader, the follower may have more than one choice
y = y(x) (i.e.,, O(z) is not a singleton) and none of those can realize the
leader’s optimality. The cooperatif assumption results from the constraint
f(z,y) — V(z) = 0, since this one reflects the fact that the leader knows all
vectors y = y(z), solutions of the second level problem P(z) for each fixed z in
X. In general, when this cooperatif hypothesis is not assumed, every solution
to the (BLPP) is a solution to the (RBLPP), but the inverse is false (see
example 5.2). Nevertheless, if for each z in X, O(z) is at most reduced to a

singleton, then the problems (BLPP) and (RBLPP) are equivalent.

(3) The set O(z) of definition 2.1 (4), can be rewritten as

O(z) = {y € S(z) : f(=z,y) < V(2)}.

It can be readily noted that when m, = 0, then S = Gr(O(-)), the graph of
the multifunction O(-).

From now on, we suppose that the (BLPP) is cooperatif in the sense explained
above. Therefore, we will not make any difference between problems (BLPP) and
(RBLPP) except if we mention the contrary.

The reformulation of the (MLPP) is given in section 6, where an example of
[5] is treated following this reformulation.

In the existence theory studied in section 5, we will need the ls.c. (lower
semi-continuity) of the value function V(-). In the result below, we give sufficient

conditions to garantee this property. For this end, we suppose the following.
(h1) £(-,-),g¢(-,) are Ls.c. on X x Y.
{(h2) There exists ¢ > 0 such that for each x € X, the following level set
Bz(eo) :={y €Y : f(z,y) < V() + €0}
is included in a fixed compact subset A of Y.

8



Note that hypothesis (h2) can be realized if one of the following hypotheses is

satisfied.

(h2.1) Y is compact.

(h2.2) Y is closed and the level set of (h2) is uniformly bounded relatively to z,

i, dM >0 s.t. sup |y| £ M.
yEBy(20),m€X

Lemma 3.2 Suppose that hypotheses (h1), (h2} are satisfied. Then we have
(a) S(z)# 0 (& V(z) < +o0) = O(z) # 8.
(b) V() is Ls.c.on X.

Proof. (a) Let (y) be a minimizing sequence for P(z). (Such a sequence ex-
ists because of the hypothesis S(z) # #.) So for all 7,3 € Y, g(z,%:) < 0 and
lim; 400 f(z,3:) = V{(z). Therefore, for : big enaugh, f(z,y:) < V(z) + €0, i€,
yi € By(eo). By hypothesis (h2), we can suppose without loss of generality that
(y:) converges to some y € Y. The ls.c.of f and g implies that g(z,y) < 0 and
V(z) = f(z,y). Consequently, y is feasible for P(z) and then f(z,y) > V().
Hence V(z) = f(z,y) and y € O(z).

(b) Let (z;) C X be any sequence converging to z € X. We have to prove
that liminfi 40 V(z:) 2 V(z). We can suppose without loss of generality that
liminf; 4o V(z:) = limigeo V(i) < 00. Let y; € S(x;) s.t. flai,5:) = V(=) (at
least after certain rank for ¢). Since f(z;,4:) < V(z:) + €0 V¢, then by (h2), we
can extract a subsequence which we don’t relabel converging to some y € Y. Using
the l.s.c.of g, we have y € S(z); hence V(z) £ f(z,y). Using the Ls.c. of f, we
deduce that f(z,y) < liminfi_ 1o V(z;). Consequently, V(z) < liminf; 4o V(z:).

|

In the following lemma we keep hypothesis (h1) in force and we replace hy-
pothesis (h2) by the weaker one.



(h2)” There exists gq > 0 and 7 € X s.t. V(Z) < 0o and the following set:
Bi(eo,E):={y €Y : f(z,y) < V(T) + €0}
is included in a fixed compact set A of Y for all z € X.

Note that this hypothesis can be satisfied if for example we can find an Z € X for

which we have
(1) Bi(eo,Z) C A CY, with A being compact,
(il) & € argmingex f{z,y) for each fixed y € Y.
Lemma 3.3 Under hypotheses (h1) and (h2)’, we have
0<e<eg and V(z)<V(Z)+e= Oz)#0.

Proof. The proof is quite similar to the one of the previous lemma and thus is
omitted. [

In the following proposition we give some properties of the multifunction O(-) :
R — 2B™ g+ O(z). Of course we suppose that for all z in X, S(z) # 0. This
implies according to Lemma 3.2 (a) that O{(z) £ 0 Vz € X.

Proposition 3.1 Suppose that hypotheses (h1), (h2) are satisfied and that V{-)

is u.s.c. Then
(1) The multifunction O(-) is closed, i.e.,

y; € O(z;)
;= = yc O(m)

Yi— ¥y

(i) Yz € X,0(z) is compact.
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Proof. (i) The relation y; € O{z;) is equivalent to say that y; € S(z;) and
flziy) = V() for all 4. Since f(z;,y:) = V(i) < V(i) 4+ €0 and y; — y, then
by (h2), we must have y € Y. Now the Ls.c. of g(-,-) implies that g{z,y) < 0. So
y € S(«). Finally, we have

flz,y) £ lminfi o f(zi,3:) (fis Ls.c)
= liminf;qe V{x:)
< limsup;, o V(z:)  (Vis us.c.)
< V().

This implies that y € O(x) and the proof of part (i) is finished. Part (ii) is a

consequence of (i). ]

4 Non-convexity of the (BLPP)

Before we discuss the nonconvex nature of the (BLPP), we give the following

definition.

Definition 4.1 Let X € R™,Y C R™ be two nonempty conver sels. Let M :
X — 2¥ be a multifunction. Then we say that M(-) is convez if it satisfies the

following conditions:

y1 € M(z,)

} = Ay + (1 — Ay € M(Azy + (1 = A)z2)
y2 € M(z2)

VAiel[0,1] and ¥V x1,2, € X. That is
)\M(xl) + (1 - A)M(i’g) C M()\IIF]_ 4 (]. - /\)222) v Ty, Tz € X,V A € [0, 1].

Note that when M(-) is a point-to-point function, the definition given above

coincides with the usual definition of an affine function.
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" Perhaps the big difficulty to solve the (BLPP) is its nonconvex aspect as was
shown in many papers, [1], [2], [3], [4], [6], [7], [15] and others. In fact, the definition
of an optimal solution for this problem indicates that this last one is convex in the
standard sense if the function F(-,) is convex and the inducible set § is convex
too. The convexity of S is related not only to that of the functions f(-,-),g(-,")
and G(-,-) and the sets X,Y, but also to the convexity of the multifunction Of-).
Moreover, the last requirement cannot be garanteed even when the second level is
linear as was shown in many papers. Since O(:} is linked to f(-,-),V(-) and 5(-)
(so to Y and g¢(-,-)), then even when f(-,-) and —V(-) are convex, S(-) is convex
(as a multifunction), O(-) may be nonconvex and a fortiori S (see example 5.2).
So in order to assure the convexity of 5, we should put a strong hypothesis on the
function V/(-), which guarantees the convexity of the multifunction O(.). In fact,

we have the following result.

Proposition 4.1 (a) Suppose that for each fired z in X, the functions f(z,-),

g(z,-) are convex and the set Y is conver. Then O(z) is a conver set.

(b) Suppose that f(-,-),g(-,+) and G(.,) are convex functions, X,Y are convez
sets and O(-) is conver (in particular this is the case if V() is affine for

ezample). Then S is convez.

Poof. (a) The proof of this part is straightforward and thus is omitted.

(b) Recall that § = SN {(z,y) : y € S(z),y € O(z)}. It is obvious that
hypotheses imply that S is convex. The convexity of ¢g(-,-) and ¥ implies that
the multifunction S(-) is convex. So it remains just to prove the convexity of the
multifunction O(-) when V(-) is supposed to be affine. Indeed, let A € [0,1],11 €
O(z1), y2 € O(z3), with z,,25 € X. Then

12



f()\:cx + (1= Nzz, Apn + (1 — /\)?}2) < Af(z,p) + (1= A)f(22,12)
(f(-,-) is convex)
AV(e1) + (1 = AV(za)
(because y; € O(z;),t = 1,2)
= V{21 + (1= M)

(since V(-) is affine).

IA

This implies that Ay + (1 — A)yz € O(Az1 + (1 — A)z,), and the proof is achieved.

Remark 4.1 The hypothesis that “V{) is afline” cannot be weakned. Even if V(-)
is piecewise affine as when the second level is linear, 5 is not necessarily convex.
In the linear case for example, V() is piecewise affine, however S can be formed
of more than one face of the polydron generating the set of constraints 5. It seems
by examining the last inequalities sequence in the proof above that the concavity
of V(.) suffices to garantee the convexity of S. However, it is possible that for
some A € [0,1] and zy,25 € X, AV(21) + (1 — A)V(z2) < V(Az1 + (1 — A)za).
Example 5.2 provides a situation where all hypotheses of part (b) are satisfied,
V(-) is concave, yet S is not convex. In conclusion, the class of (BLPP) problems
which are convex, is very small and we should think of the (BLPP) as a heighly
difficult problem. Note that the hypothesis that V/{-) is affine is only a sufficient
condition for O(:) to be convex and not a necessary condition; an example can be

provided easily.
As an immediate consequence of the propaosition above is the following.

Proposition 4.2 Suppose that hypotheses of the preceding proposition (b) are sai-
isfied and in addition that F(.,.) is convexr. Then if a solution to the (BLPP)

exists, it is a ghlobal one.
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The counterexample given in [9] can be seen as an application of this last

proposition, where S is formed of a unique face of the polydron generating S, the

reason for which V(-) is affine.

5 Existence

Existence is a step whose role is to reassure us before attacking different tools
in order to identify solutions (sufficient conditions) or at least possible candidats
(necessary conditions). In this paper, we limit ourselves to existence theory. In
general, the (BLPP) does not admit a solution. As an example, we give the

following.

Example 5.1 We consider the following problem:

(P) _min (z—y),
where for each fixed z,y = y(z) is a solution to the problem:
Imin zy,
sty > —o—1.
So the data of (P) in the standard form of (BLPP) are: F(z,y})=z—y, f(z,y) =

ry,G(z,y) = —z—y~1,X =[-1,1] and ¥ = [—1, +o0]. For this problem we have
S={(z,9): -1<z<0yz-1-z}U{(z,y): 0<z<1y2~-1},

a set which is unbounded and closed (see fig.1).

The set of solutions to the second level problem for each fixed z in X is given by

4] :—1<z <0,
Oz} =9 [-1,+o0] :2=0,
-1 0<z <.

14



S = Gro())

Figure 1: The geometry of Example 5.1

So the domain of the multifunction O(-) is [0,1] (its graph is shown in fig.1).

Consequently, the value function V(-} corresponding to the second level is given

—x0 1<z«
Viz)=90 :z2=0,
—z <zl
Thus V(-) is u.s.c.at 0 and is not l.s.c. at the same point. Moreover, V(-) is fi-
aite only on the interval [0,1].
Let examine now if the problem has a solution. If it is the case, then the cor-

responding (RBLPP) must have a solution (Lemma 2.1) and the formulation of

this last one is
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(P) min(z —y)

[ 1<e<1, ()
y > —1, (2)
y2-z-1, (3)

| 9(z, 9} <0,  (4)

s.t.:¢

400 ~1<es<0,y> —2—1,
where g(z,y) := f(z,y) - V(z) =49 0 rx =0,y 2> -1,
zy+z 0<z<l,y2> —1.

Therefore when 0 < =z £ 1,¢9(z,y) £ 0 & y = —1. Let define the following

sets:

Dy = {(z,y) e R*: 2 =0,y = -1},
Dy :={(z,y) eR?:0<z<l,y=—-1}.

Then D; and D; are disjoint sets and (z, y) is feasible for (#) iff (z,y) € DiUD, =
S = Gr(0O(-)). We have

infz yep, (£ — y) = infzmoy>-1(z — y) = —o0,

inf(; yyep,(z — y) = infocaga(2z +1) (this infimum cannot be attained).

In conclusion, (P) does not have any solution in both cases cooperatif case and

noncooperatif case. n
Throughout this section, we assume the following hypotheses:
(Hl) F(a ')s f('s')s g('a ) and G(: ) are l.s.c.on X x Y.

(H2) inf(BLPP) < o0,V(-)is us.c.on X,
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(H3) There exists 9 > 0 s.i. the set
B(eo) = {(z,y) € §: F(z,y) < inf(BLPP) + &o},
is included in a fixed compact subset B of X x Y.

Let us note that hypothesis (H3) is satisfied if for example X x Y is compact or
if X x Y is closed and B(go) is bounded.

Proposition 5.1 Under the hypotheses (H1)-(H3), the (BLPP) has at least one

optimal solution.

Proof. Let {(#;,¥:)} be a2 minimizing sequence for the (BLPP), i.e., f(z:,y;) —
Viz:) =0,G(zs,4:) £ 0,9(z0, ) €0, (x5, 3) € X XY Viand limuqo Fag,y) =
inf(BLPP). So for ¢ big enough, F(z;,3:) < inf(BLPP) + €, ie., (zi,y) €
B(eq). Now by (H3), we can pass to a subsequence if necessary to confirm that
{(ziyy:)} converges to some (z,y} € X x Y. The Ls.c. of f(-,-) and the us.c.
of V(-} imply that f(z,y) — V(z) < liminfi o f(zi,3:) — limsup,,, , V(z;) =
liminf; oo {f(zi, v:) —V(2:)} < 0. Since F(-,-},¢(:,-) and (G(-,) are l.s.c., then it
follows that (z,y) is feasible for the (BLPP) and liminf;, 400 F{zi, 1) > F(z,y).
Consequently, F(z,y) = inf(BLPP) and (z,y) is an optimal solution to the
(BLPP). a

When the inequality constraint G < 0 is absent, i.e., m; = 0, an alternate
existence result based on the closedness property of the multifunction O(-) can be

derived. The hypothesis {H3) will be replaced by the following one.
(H3)’ The set {(z,y) € X xY : f(z,y) < V(z)} is compact.

Proposition 5.2 Suppose that my = 0,inf(BLPP) < oo and that hypotheses
(H1),(h2) and (H3)’ are satisfied. Then the (BLPP) has at least one optimal

solution.
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Figure 2: The geometry of Example 5.2

Proof. Since the constraint G < 0 is absent, then according to remark 3.1 (3),
one has § = Gr{0O(:)). Now according to Prop.3.1 (i), the multifunction O(-) is
closed. So the (BLPP) is equivalent to the following problem:
e Boy @ ¥}

Then using l.s.c.of F(-,-}, (H3)’ and the closedness of O(-) we deduce that this
last problem has at least one optimal solution and so the (BLPP) also. ]

As we have mentioned in remark 3.1 (2), a (BLPP) can have a solution in the
cooperatif case and the same problem can have no solution in the noncooperatif

case. To show this, we give the following example.

Example 5.2 Let us consider the following problem:

(P) min(z+y),
s.t. for each fixed x,y = y(z) is a solution to the problem :

max Ty
y20

st r4y—1<0.

The region of constraints S corresponding to this problem is shown in fig.2.
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It is clear that existence hypotheses (H1)-(H3) are satisfied. So (P) has a
solution in the cooperatif case of course.

Let z be fixed. Then the value function V(-) of the second level problem is

0 if z=0,

V(w):mmax{y:{)gy£1_$}={ .
z(l—z) if z¢€)0,1].

That is, for 0 < = < 1, the problem defined by V(-) has a unique solution given
by #(z) = 1 — z and if z = 0, then for every choice y € [0,1] by the follower,
its objective function takes the value 0. It happens in this example that V(-) is
continuously differentiable everywhere in [0,1]. However it is not always the case
(for an example, see Exemple 3.1 of [4] or [19]).

Consequently, the inducible set for this problem is

S={{z,1—-2):0<2<1}U{(0,y): 0<y <1},

a nonconvex closed set (S is indicated in bold in fig.2). As this problem does not

contain a coupled inequality constraint in the first level, then according to remark

3.1 (3), we have Gr{O(:)) = §. So

(P) & minF(s,y),

$+y_150$ y_lsoa
s.t.: —z < 0, or -y <0,
_ySUa $=0,
where
) ifm=0,U$y$1a
Flz,y)= .
z+g(z)=1 f 0<z<1,0<y< 1.
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Suppose that the problem is cooperatif. Note that when 0 < z < 1,
F(z,y(z))is identically equal to 1 and when = 0, the minimum value of F(z, y(z))
is attained at y = 0 and is equal to 0. Consequently, the unique solution to this
problem in the cooperatif case is the point (0,0).

Suppose now that the problem is not cooperatif. Then when z = 0, the follower
does not realize any gain and he can be indifferent with the leader by choosing y €
10, 1], a choice which does not allow to the leader to attain his objective, Whereas
if z €]0,1], then the follower would have prefered that the leader choose 2 = 1/2
in order to attain his optimized objective of 1/4, a choice for which the leader will
not realize his infimum of 0. In conclusion, (P) does not have a solution in the
noncooperatif case.

We leave to the reader to check that the reformulation of (P) according to

Lemma 3.1, will give the same conclusion as in the coooperatif case. n

6 General multi-level programming problem

Let p > 1,n, > 1,m, > 0 be given integers. Let F* : B™ x ... x R» —
R (i=1,...,p,G: B"x...xB» - B™ (i =1,...,p) be given func-
tions and X*,..., X? be given subsets of R™,..., R™ respectively. We set G* =
(GS,...,Gi] (i=1,...,p). A generic vector from R™ X ... x R™ is denoted by
(z!,...,2P).

The multi-level programming problem can be stated as follows:

20



min F'(z!,...,2"),
(MLPP) (P1) zrEX1
s.t. G(z!,...,2P) <0,

s.t. for each fixed z',z? = z2?(2!) solves

min F?*(z!,z%),
(B | e
s.t. G?(21,2%) <0,

2

s.t. for each fixed z!,z?%, 2 = z3(z?, 2?) solves

3

s.t. G3(zl, 2% 2%) <0,

............................................................
............................................................

s.t. for each fixed z!,...,277%, zP! = 2271(?, ..., 2P~ %) solves
1;11i}r(1 ) Frl(g! . 2P,
p—igXp-
(Pp—l) e 11 .
st. GP(zl, ..., 2P 1) €0,
s.t. for each fixed z?,...,2P71, 2% = zP(2’,...,2P") solves
min F?(z!,...,zP),
() | e
st. GP(z%,...,zP) < 0.

We agree that whenever m; = 0, this means that the corresponding inequality

constraint G* is absent.

The following definition corresponds to Def. 2.1.
Definition 6.1 (1) The region of constrainis for (MLPP) :
S={z=(z)...,2") € X’ x...x X?: G'(z',...,2') <0 (i=1,...,p)}.
(2) Feasible set for the i (i = 2,...,p) level of (MLPP)
S(',...,e" )= {z' e X*: Gi(',...,z") <0}
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(3) The reaction set of (P, for fized (z2,....2" 1), (i = 2,...,p)
Oz!,..., ") = {Z e (=, ..., ) : Fearg min Fi(z',...,2%}.
(4) The inducible set for (MLPP) :
5= {(z',...,2") € §: 2 € O(z",...,2"") (i=2,...,p)}

Let us define the value functions corresponding to each level of the (M LPP),
Vi:R™ x...x B = RU{400,—00} (i=2,...,p) s.t.

V"(xl,...,xi_l) = Fi(&’:l,...,wi_l),

- inf
stES(at,.. 2t 1)
with the convention that the infimum over the empty set is equal to +oo. Thus,

the following lemmma corresponds to lemma 3.1.

Lemma 6.1 As long as the (M LPP) has a solution, then the vector (Z%,...,2")
is a solution to the (MLPP) iff it is a solution to the following problem:

(RMLPP) min[xl'.__!xp) Fl (.121 yroong :I‘p),
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As an example we consider the same problem suggested in [5].

Example 8.1 The problem is the following:

(P) ogigs(—xl + 3 — z3),

s.t. for given x,,z2 = z3(z1) solves:
min —z
230 23

31 2 01

2$1+$2-—'1050,

s.t.

s.t. for given zy, z3, 3 = z3(z1, x2) solves:

2$1+$2+$3_18§0-

Thus, the data of this problem are:

p=3ni=ny=na=1m =0,my=2and my=3.

Fl(Ih T3,%3) = —Z1 + T3 — Ta.
Fz(ﬂ':g) = —Z3.
F3($3) = —I3.

G’z(:c;,wg) = [2$1 + Ty — 10, —'EI].

G321, 22, 23) = 221 + 22 + 23 — 18, —21, —23].

X1 =10,86].
X? =0, +o0[.
X3 =10, 40
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It is obvious that we have
V3(xy,23) = 221 + 22 — 18,

V2(171) = 2.’81 —10.

Therefore, the reformulation of (P) according to the previous lemma leads to the

following problem:

() iy mm o= o)

' —z3— 21y — 2, +18 =0, (1)

—2y — 22y + 10 = 0, (2)

91 + 22 ~ 10 < 0, (3)

s.t.¢ 2ry 4+ 2+ 23 —18<0, (4)

0<az <6, (5)

zp > 0, (6)

| 73> 0. (7)

Let (z1,%2,23) be a solution to problem (#’). Then from (1) and (2) it follows
that 3 = 8 necessarily. Thus (3) and (4) are identical and using (5), (6) we
deduce that {P’) is equivalent to the minimization of —3z; on the interval [0, 5],
which has the unique solution #y = 5; hence z; = 0 by (2) or (1). Consequently,
the point (5,0,8) is the unique solution to (P) as was pointed out in [5]. The

geometry of this example is shown in fig.3. n
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B(0,10,8)

A(5,0,8)L

10

/

X1

Figure 3: The geometry of Example 6.1
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7 Application

As an application of the (BLPP) we consider the model defined below based on
the continuous Lanchester model [14]. This application constitutes a small part of

a work which is now under preparation with professors M. Breton and G. Zaccour.

The model: We suppose we have two competitors in a competition for a market
share (let say M for the leader and 1 — M for the follower). Each of the two players

wishes to maximize its discounted profit:

T
Leader’s objective: max J'=3" p'ri( A, My)

t=0
T
Follower’s objective: max J*=3" pra(By, My)
t=0
Where
ri{Be, My) = g1 M — A;
r2( Be, My) = g2(1 — M) — B
The leader’s market share M varies over ¢ = 0,1,2,...,T via the equation

My = Mo+ [BAS(L— M) — BoB*M,] t=0,1,...,T,

with My, the initial market share is given. We explain below the meaning of each

element present in the model.

Ay The leader’s advertising level at period {.
B, The follower’s advertising level at period t.
0<p<1 The discount factor.

>0 The leader’s market share value parameter.
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g2 >0 The follower’s market share value parameter.

D<oy <l The leader’s elasticity parameter.,

0<ar <1 The follower’s elasticity parameter.

Bi >0 The leader’s advertising effectiveness parameter.
B2 >0 The follower’s advertising effectiveness parameter.

This is a dynamic bi-level programing problem. However, in order to solve it,

we will use static bi-level programming as we will see below.

Solution: We divide the problem into T + 1 periods. At period : € [1...T + 1]
the leader’s and follower’s objective functions are as follows:
Jh ="' ri(A, M),
t=0

J2=Y p'ra(B, M),

t=0
where functions ry and r; are extended in a natural way to period 7'+ 1, and where

of course we take Ary; = Byyq = 0 at the last period since at this period the game
is over and the advertising are unnecessary. Therfore we have My, = Mryy. In
order to solve the problem globally, we will proceed by solving it period by period,
where at each period we have a static bilevel problem. The solution we will give
is a closed-loop solution. That is advertising functions depend only on market
share. The case where advertising functions deppend only on time correspond to
the open-loop solution. The advantage of the present solution is that it has the
same pattern as the open-loop solution of [14]. But the most interesting thing is
the fact that the present one is explicit and no numerical computations are needed.

The solution procedure is as follows.
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Period 1

Period 2

For fixed Ap, the follower’s problem is the following:

1
max J§ = 3 p'ra(By, My) = [02(1 — Mo) — Bo| + plga(l ~ My) - B]
t=0

with
My = Mo+ B1Ag (1~ My) — B2 Bg* Mo (1)

The solution By to this problem is such that
—1 + pazfag. Mo B3t = 0,

le.,
1

By = [pazﬁzgz Mo] ",

Considering Bp = By Ap) via (1), the leader’s problem becomes
1
moax Jo = Zpt?"l(AtaMt) = [91(Mg - Aﬂ] + P[glMl - Al]
=0

where M is given by {1). The solution to this problem is such that
—1+ pgrenfi(1 — Mo)AF~ =0

1.e.,
i

fiu = [,091&1{31(1 - Mo)] o .

The same computations presented in period 1 are repeated for the

present period to leads to

1

B = [Pﬂ'zﬁzgzﬂ’ﬁ] T

and
1

A= [Pglalﬁl(l - M1)] S

The procedure continuous in this way until we arrive to period T + 1.
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Period 7 + 1 In this period, for fixed Az, the follower’s objective is

T4+1
max J3,1 = ra( By, M)
T =0
By the equation
My = My + B1A7 (1 - Mr) — 32 B7* M7 (2)

it follows that the solution Br to the follower’s problem is such that
—1+ pagfageMr B! = 0,

ie.,
1

Br= [PazﬁzgzMT] o
Considering Br = Br(Ar) via (2), it follows that the solution to the

leader’s problem is given by:

1

/IT = [Pglalﬁl(l — MT)] T

The conclusion is that the solution to the model can be computed reccursively

via the following system:

1

. Bﬁ = [pa2ﬁ2g2Mt]l_ua t= 0)1721"'$T

*» A = [ff’y'lauﬁﬁ(l—Mt)]m t=0,1,2,...,T
o My=M,_, + [51 AT (1 — My_q) - ﬂgfa’f"le;_l] t=1,2,...,T with M,

given.

We say that the problem is symetric if corresponding parameters for the leader
and the follower are equal. It is easy to prove that in the symetric case, the market
share remains constant iff the initial market share is equal to 0.5 for the optimal
solution below and in this case the optimal strategies pairs (A:, B;) are equal of
course. If M is not necessarily equal to 0.5, we have the following result. A general

result for any kind of solution is available but not stated here.
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Proposition 7.1 Suppose we are in the symetric case. The market share con-
verges to 0.5 when the horizon planing T is sufficiently large, and the optimal

advertising functions converge to the constant (pafBg/2)H/(1-2),
Proof. Let o; =a,8; =Fand g, =g (¢ =1,2). Then fort =1,2,...,7T
M, =M,y +C|(1 = Mey)® — M7 (3)

where

C = B(pafBg)i==

1
a = E E]l, +OO[.

Since the sequence {M,;}; must converge at least for a subsequence to some M €

[0,1], it follows by passing to the limit as ¢ — +00 in (3)
(1-M)* = M°.

Since the numerical function defined on [0,1] by f(z) = z* is one to one on [0, 1],
the last equation has a unique solution, namely M = 0.5 and the proof is acheaved.
||

In figures 4, 5 and 6 we have presented a particular case where the problem
is symetric with the following parameter values: My = 0.25,7 = 30,p = 1,04 =
05,8 =05and ¢; =1 (: = 1,2). It is not surprising that the market share
converges to its steady-state value of 0.5 over a sufficient large horizon 7', the same
conclusion as that of [14] confirmed here by the same proposition. Advertising
functions converge to the same steady-control value which is equal 1/64=0.015625
by the last proposition. The advantage of the present solution is that advertising
values are very low with respect to the results addressed in the continuous case in
[14]. Since no results concerning profits are available in [14], we cannot make any

comparaison in this issue.
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Market Share Path
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Figure 4: Market Share Path in the symetric case

Advertising Paths
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Figure 5: Advertising Paths in the symetric case
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Profit Paths
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Figure 6: Profit Paths in the symetric case
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